<u>Chapter 7</u>: Techniques of Integration

<u>Section 7.7</u>: Approximate Integration

There are certain (definite) integrals whose value can not be found exactly

$$\int_0^{\pi} \sin(x^2) \, dx \qquad \int_0^1 e^{x^2} \, dx \qquad \int_{-1}^1 \sqrt{1 + x^3} \, dx$$

Midpoint Rule

$$\int_{a}^{b} f(x) dx \approx M_{n} = \Delta x \left[f(\overline{x}_{1}) + f(\overline{x}_{2}) + \dots + f(\overline{x}_{n}) \right]$$
where $\Delta x = \frac{b-a}{n}$
and $\overline{x}_{i} = \frac{1}{2}(x_{i-1} + x_{i}) = \text{midpoint of } [x_{i-1}, x_{i}]$

Derive...

Midpoint Rule

$$\int_{a}^{b} f(x) dx \approx M_{n} = \Delta x \left[f(\overline{x}_{1}) + f(\overline{x}_{2}) + \dots + f(\overline{x}_{n}) \right]$$
where $\Delta x = \frac{b-a}{n}$
and $\overline{x}_{i} = \frac{1}{2}(x_{i-1} + x_{i}) = \text{midpoint of } [x_{i-1}, x_{i}]$

<u>Ex 1</u>: Use the midpoint rule with n = 4 to estimate $\int_0^1 e^x dx$. Then find the error in your estimate

Trapezoidal Rule

$$\int_{a}^{b} f(x) \, dx \approx T_{n} = \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}) \right]$$

where $\Delta x = (b - a)/n$ and $x_i = a + i \Delta x$.

Derive...

Trapezoidal Rule $\int_{a}^{b} f(x) dx \approx T_{n} = \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}) \right]$ where $\Delta x = (b - a)/n$ and $x_{i} = a + i \Delta x$.

<u>Ex 2</u>: Use the trapezoidal rule with n = 5 to estimate $\int_{1}^{4} \sqrt{x} \, dx$ then find the error in your estimate.

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx S_{n} = \frac{\Delta x}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right]$$

where *n* is even and $\Delta x = (b - a)/n$.

Derive...

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx S_{n} = \frac{\Delta x}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right]$$

where *n* is even and $\Delta x = (b - a)/n$.

<u>Ex 3</u>: Use Simpson's rule with n = 8 to estimate $\int_0^{\pi} \sin(x) dx$ then find the error in your estimate

Errors

$$E_M = \int_a^b f(x) dx - M_n$$

$$E_T = \int_a^b f(x) dx - T_n$$

$$E_S = \int_a^b f(x) dx - S_n$$

Errors

3 Error Bounds Suppose $|f''(x)| \le K$ for $a \le x \le b$. If E_T and E_M are the errors in the Trapezoidal and Midpoint Rules, then

$$|E_T| \leq \frac{K(b-a)^3}{12n^2}$$
 and $|E_M| \leq \frac{K(b-a)^3}{24n^2}$

4 Error Bound for Simpson's Rule Suppose that $|f^{(4)}(x)| \le K$ for $a \le x \le b$. If E_s is the error involved in using Simpson's Rule, then

$$\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180n^{4}}$$

<u>Ex 4</u>:

- a) Use T_8 to approximate $\int_0^1 \cos(x^2) dx$
- b) Estimate the error in using T_8 to approximate $\int_0^1 \cos(x^2) dx$
- c) How large does n have to be so that T_n approximates $\int_0^1 \cos(x^2) dx$ to within 0.0001?

<u>Ex 5</u>: How large should *n* be to guarantee that the Simpson's Rule approximation to $\int_0^1 e^{x^2} dx$ is accurate to within 0.00001?